Открытое образование

Термодинамика и молекулярная физика

  • Начальный уровень
  • Наставник: Нет
  • Сертификат: Есть
  • Формат: Online
  • Рассрочка: Нет
  • Язык: Русский
  • Осталось мест: не ограничено
Записаться

Термодинамика и молекулярная физика

Организатор курса: МФТИ, Физтех

 

Курс входит в пакеты курсов (возможность приобрести доступ к нескольким курсам по сниженной стоимости):

 

По онлайн-курсу возможно получение сертификата.

В курсе рассматриваются ключевые понятия и методы термодинамики и молекулярной физики как части курса общей физики, читаемого студентам Московского Физико-Технического Института. Прежде всего, вводятся основные термодинамические величины, понятия и постулаты. Рассматриваются основные термодинамические соотношения. Отдельные лекции посвящены теории фазовых переходов, модели газа Ван-Дер-Ваальса, поверхностным явлениям. Даются основные понятия статистической физики: микро- и макро состояние системы, статистическая сумма, функции распределения и др. Обсуждаются распределения Максвелла, Больцмана, Гибсса. Излагаются элементы теории теплоемкости газов. Выводятся выражения для флуктуаций основных термодинамических величин. Дается молекулярных процессов в газах: процессов переноса, диффузии и теплопроводности.

Программа обучения
  • Неделя 1
  • Основные понятия молекулярной физики и термодинамики: предмет исследования, его характерные особенности. Задачи молекулярной физики. Уравнения состояния. Давление идеального газа как функция кинетической энергии молекул. Соотношение между температурой идеального газа и кинетической энергией его молекул. Законы идеальных газов. Уравнения состояния идеального газа. Квазистатические, обратимые и необратимые термодинамические процессы. Нулевое начало термодинамики. Работа, теплота, внутренняя энергия. Первое начало термодинамики. Теплоёмкость. Теплоёмкость идеальных газов при постоянном объёме и постоянном давлении, уравнение Майера. Адиабатический и политропический процессы. Уравнение политропы для идеального газа. Адиабатический и политропический процессы. Независимость внутренней энергии идеального газа от объёма.
  • Неделя 2
  • Второе начало термодинамики. Формулировки второго начала. Тепловая машина. Определение КПД тепловой машины. Цикл Карно. Теорема Карно. Неравенство Клаузиуса. Максимальность КПД цикла Карно по сравнению с другими термодинамическими циклами. Холодильная машина. Эффективность холодильной машины. Тепловой насос. Эффективность теплового насоса, работающего по циклу Карно. Связь между коэффициентами эффективности теплового насоса и холодильной машины.
  • Неделя 3
  • Термодинамическое определение энтропии. Закон возрастания энтропии. Энтропия идеального газа. Энтропия в обратимых и необратимых процессах. Адиабатическое расширение идеального газа в вакуум. Объединённое уравнение первого и второго начал термодинамики. Третье начало термодинамики. Изменение энтропии и теплоёмкости при приближении температуры к абсолютному нулю.
  • Неделя 4
  • Термодинамические функции. Свойства термодинамических функций. Максимальная и минимальная работа. Преобразования термодинамических функций. Соотношения Максвелла. Зависимость внутренней энергии от объёма. Зависимость теплоёмкости от объёма. Соотношение между СP и СV. Теплофизические свойства твёрдых тел. Термодинамика деформации твёрдых тел. Изменение температуры при адиабатическом растяжении упругого стержня. Тепловое расширение как следствие ангармоничности колебаний в решётке. Коэффициент линейного расширения стержня.
  • Неделя 5
  • Условия термодинамического равновесия. Фазовые превращения. Фазовые переходы I и II рода. Химический потенциал. Условие равновесия фаз. Кривая фазового равновесия. Уравнение Клапейрона–Клаузиуса. Диаграмма состояния двухфазной системы «жидкость–пар». Зависимость теплоты фазового перехода от температуры. Критическая точка. Тройная точка. Диаграмма состояния «лёд–вода–пар». Поверхностные явления. Термодинамика поверхности. Свободная энергия поверхности. Краевые углы. Смачивание и несмачивание. Формула Лапласа. Зависимость давления пара от кривизны поверхности жидкости. Кипение. Роль зародышей при образовании новой фазы.
  • Неделя 6
  • Газ Ван-дер-Ваальса как модель реального газа. Изотермы газа Ван-дер-Ваальса. Метастабильные состояния. Перегретая жидкость и переохлаждённый пар. Правило Максвелла и правило рычага. Критические параметры и приведённое уравнение состояния газа Ван-дер-Ваальса. Внутренняя энергия газа Ван-дер-Ваальса. Уравнение адиабаты газа Ван-дер-Ваальса. Энтропия газа Ван-дер-Ваальса. Скорость звука в газах. Скорость истечения газа из отверстия. Эффект Джоуля–Томсона. Адиабатическое расширение, дросселирование. Получение низких температур.
  • Неделя 7
  • Проверочная
  • Неделя 8
  • Динамические и статистические закономерности. Макроскопические и микроскопические состояния. Фазовое пространство. Элементы теории вероятностей. Условие нормировки. Средние величины и дисперсия. Биномиальный закон распределения. Распределение Пуассона. Распределение Гаусса.
  • Неделя 9
  • Распределения Максвелла. Распределение частиц по компонентам скорости и абсолютным значениям скорости. Наиболее вероятная, средняя и среднеквадратичная скорости. Распределения Максвелла по энергиям. Среднее число ударов молекул, сталкивающихся в единицу времени с единичной площадкой. Средняя энергия молекул, вылетающих в вакуум через малое отверстие в сосуде.
  • Неделя 10
  • Распределение Больцмана в однородном поле сил. Барометрическая формула. Микро- и макросостояния. Статистический вес макросостояния. Статистическое определение энтропии. Энтропия при смешении газов. Парадокс Гиббса. Представление о распределении Гиббса. Статистическая сумма и её использование для нахождения внутренней энергии. Статистическая температура.
  • Неделя 11
  • Флуктуации. Средние значения энергии и дисперсии (среднеквадратичной флуктуации) энергии частицы. Флуктуации термодинамических величин. Флуктуация температуры в фиксированном объёме. Флуктуация объёма в изотермическом и адиабатическом процессах. Флуктуации аддитивных физических величин. Зависимость флуктуаций от числа частиц, составляющих систему.
  • Неделя 12
  • Теплоёмкость. Классическая теория теплоёмкостей. Закон равномерного распределения энергии теплового движения по степеням свободы. Теплоёмкость кристаллов (закон Дюлонга–Пти). Элементы квантовой теории теплоёмкостей. Характеристические температуры. Зависимость теплоёмкости от температуры.
  • Неделя 13
  • Столкновения. Эффективное газокинетическое сечение. Длина свободного пробега. Распределение молекул по длинам свободного пробега. Число столкновений молекул между собой. Явления переноса: вязкость, теплопроводность и диффузия. Законы Фика и Фурье. Коэффициенты вязкости, теплопроводности и диффузии в газах.
  • Неделя 14
  • Броуновское движение. Подвижность. Закон Эйнштейна–Смолуховского. Связь подвижности частицы и коэффициента диффузии. Явления переноса в разрежённых газах. Эффект Кнудсена. Эффузия. Течение разрежённого газа через прямолинейную трубу.
  • Неделя 15
  • Проверочная
  • Неделя 16
  • Экзамен